REGIONAL FEATURES OF INFRAGRAVITY SEA WAVES IN THE RANGE FROM 20 TO 300 SECONDS

Section
Monitoring, experimental and expeditionary research
  • Sergey V. Yakovenko V.I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
  • Vyacheslav A. Shvets V.I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
  • Sergey S. Budrin V.I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Keywords: infra-gravity sea waves, wind sea waves, laser mesurer of the hydrosphere pressure variations, swell waves, wind wave period, relation between infragravity waves and swell waves
(+) Abstract

The work confirms the strong relationship between the spatial properties of infragravitational waves and the characteristics of swell waves. It is shown that the energy level of infragravitational waves depends on geographical conditions and local features. It was found that surface wind waves and swell in the vicinity of Cape Schulz in the Sea of Japan enhance the amplitudes of infragravitational waves with periods from 20 to 300 s. That is, the correspondence between the increase in the amplitude of wind waves and swell and the increase in the amplitude of infragravitational waves has been established. In this case, the increase in the amplitude of infragravitational waves is accompanied by an increase in the period of wind waves. These infragravitational waves propagate in the form of wave trains, the boundaries of which practically do not change with time, while the period of individual waves inside the trains can change, however, the nature and parameters of these changes do not depend on the characteristics of the waves that generated them. At the same time, it was found that infragravitational waves are subject to a change in their spectral structure if they are affected by local oscillatory processes. Thus, in the Vityaz Bay, infragravitational waves have side maxima in the spectrum, due to the modulation effect of the seiche oscillatory process of the bay. The periods of infragravitational and wind waves recorded in Vityaz Bay can also be modulated by tidal oscillations, the characteristics of which obviously depend on local conditions.

(+) About the author(s)

Sergey V. Yakovenko,
V.I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia

eLibrary (РИНЦ)
SPIN-
код

ORCID ID

Scopus ID

Прочие (WoS, Researcher ID)

8671-8234

0000-0003-3784-9449

7005827431

R-7280-2016

Vyacheslav A. Shvets,
V.I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia

eLibrary (РИНЦ)
SPIN-
код

ORCID ID

Scopus ID

Прочие (WoS, Researcher ID)

3267-9037

0000-0002-4752-6865

1405885680

AAN-1280-2020

 

Sergey S. Budrin,
V.I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia

eLibrary (РИНЦ)
SPIN-
код

ORCID ID

Scopus ID

Прочие (WoS, Researcher ID)

1424-4172

0000-0001-7462-9459

16315110300

J-1645-2017

 

(+) References

Bondur V.G., Ivanov V.A., Vorobiev V.E., Dulov V.A., Dolotov V.V., Zamshin V.V., Kondratiev S.I., Lee M.E., Malinovsky V.V. Ground-to-space monitoring of anthropogenic impacts on the coastal zone of the Crimean peninsula. Physical Oceanography, 2020, vol. 27, iss. 1, pp. 95–107. DOI: 10.22449/1573-160X-2020-1-95-107. (Russ. ed.: Bondur V.G.,

Ivanov V.A., Vorob'ev V.E., Dulov V.A., Dolotov V.V., Zamshin V.V., Kondrat'ev S.I., Li M.E., Malinovskii V.V. Nazemno-kosmicheskii monitoring antropogennykh vozdeistvii na pribrezhnuyu zonu Krymskogo poluostrova. Morskoi gidrofizicheskii zhurnal, 2020, vol. 36, iss. 1, pp. 103–115. DOI: 10.22449/0233-7584-2020-1-103-115).

Bondur V.G., Vorobyev V.E., Murynin A.B. Retrieving sea wave spectra based on high resolution satellite imagery under various conditions of wave generation. Izvestiya, Atmospheric and Oceanic Physics, 2020, vol. 56, iss. 9, pp. 887–897. DOI: 10.1134/S0001433820090042.

Bowden K.F. Physical oceanography of coastal waters. New York: Halsted Press, 1983, 302 p.

Contardo S., Symonds G. Infragravity response to variable wave forcing in the nearshore. Journal of Geophysical Research: Oceans, 2013, vol. 118,

iss. 12, pp. 7095–7106. DOI: 10.1002/2013JC009430.

Dolgikh G., Budrin S., Dolgikh S. Fluctuations of the sea level, caused by gravitational and infra-gravitational sea waves. Journal of Marine Science and Engineering, 2020, vol. 8, iss. 10, pp. 796. DOI: 10.3390/jmse8100796.

Dolgikh G, Budrin S, Dolgikh S., Plotnikov A. Supersensitive Detector of Hydrosphere Pressure Variations. Sensors, 2020, vol. 20, iss. 23, pp. 6998. DOI: 10.3390/s20236998.

Dolgikh G.I., Budrin S.S., Dolgikh S.G., Plotnikov A.A., Chupin V.A., Shvets V.A., Yakovenko S.V. Free oscillations of water level in the Posyet Gulf bays (the Sea of Japan). Russian Meteorology and Hydrology, 2016, vol. 41, iss. 8. pp. 559–563. DOI: 10.3103/S1068373916080057. (Russ. ed.: Dolgikh G.I., Budrin S.S., Dolgikh S.G., Plotnikov A.A., Chupin V.A., Shvets V.A., Yakovenko S.V. Sobstvennye kolebaniya urovnya vody v bukhtakh zaliva Pos'eta Yaponskogo morya. Meteorologiya i gidrologiya, 2016, no. 8, pp. 57–63).

Dolgikh G.I., Dolgikh S.G., Kovalyov S.N., Chupin V.A, Shvets V.A., Yakovenko S.V. Super-low-frequency laser instrument for measuring hydrosphere pressure variations. Journal of Marine Science and Technology, 2009, vol. 14, iss. 4, pp. 480–488. DOI: 10.1007/s00773-009-0062-5.

Dolgikh G.I., Dolgikh S.G., Smirnov S.V., Chupin V.A., Shvets V.A., Yakovenko S.V. Infrasound oscillations in the Sea of Japan. Doklady Earth Sciences, 2011, vol. 441, iss. 1, pp. 1529–1532. DOI: 10.1134/S1028334X11110031. (Russ. ed.: Dolgikh G.I., Dolgikh S.G.,

Smirnov S.V., Chupin V.A., Shvets V.A., Yakovenko S.V. Infrazvukovye kolebaniya Yaponskogo morya. Doklady Akademii nauk, 2011, vol. 441, iss. 1, pp. 98–102).

Elgar S., Herbers T.H.C., Okihiro M., Oltman-Shay J., Guza R.T. Observations of infragravity waves. Journal of Geophysical Research: Oceans, 1992, vol. 97, iss. С10, pp. 15573–15577. DOI: 10.1029/92JC01316.

Guza R.T., Thornton E.B. Observations of surf beat. Journal of Geophysical Research: Oceans, 1985, vol. 90, iss. C2, pp. 3161–3172. DOI: 10.1029/JC090iC02p03161.

Holman R.A. Infragravity energy in the surf zone. Journal of Geophysical Research: Oceans, 1981, vol. 86, iss. C7, pp. 6442–6450. DOI: 10.1029/JC086iC07p06442.

Inch K., Davidson M., Masselink G., Russell P. Observations of nearshore infragravity wave dynamics under high energy swell and wind-wave conditions. Continental Shelf Research, 2017, vol. 138, pp. 19–31. DOI: 10.1016/j.csr.2017.02.010.

Kovalev P.D., Kovalev D.P., Zarochintsev V.S. The modulation of the eigen oscillation in the harbours by tide. IOP Conference Series: Earth and Environmental Science (III National scientific conference with foreign participants "Geodynamical Processes and Natural Hazards" 27–31 May 2019, Yuzhno-Sakhalinsk, Russian Federation), 2019, vol. 324, pp. 012013.

DOI: 10.1088/1755-1315/324/1/012013.

Longuet-Higgins M.S., Stewart R.W. Changes in the form of short gravity waves on long waves and tidal currents. Journal of Fluid Mechanics, 1960, vol. 8, iss. 4, pp. 565–583. DOI: 10.1017/S0022112060000803.

Munk W.H. Surf beats. Transactions American Geophysical Union, 1949, vol. 30, iss. 6, pp. 849–854. DOI: 10.1029/TR030i006p00849.

Nishida K., Kobayashi N., Fukao Y. Resonant oscillations between the solid Earth and atmosphere. Science, 2000, vol. 287, no. 5461, pp. 2244–2246. DOI: 10.1126/science.287.5461.2244.

Nishida K., Kobayashi N, Fukao Y. Origin of Earth’s ground noise from 2 to 20 mHz. Geophysical Research Letters, 2002, vol. 29, iss. 10, pp. 52-1–52-4. DOI: 10.1029/2001GL013862.

Oltman-Shay J., Howd P.A., Birkemeier W.A. Shear instabilities of the mean longshore current: 2. Field observations. Journal of Geophysical Research: Oceans, 1989, vol. 94, iss. C12, pp. 18031–18042. DOI: 10.1029/JC094iC12p18031.

Plant N.G., Holland K.T., Puleo J.A., Gallagher E.L. Prediction skill of nearshore profile evolution models. Journal of Geophysical Research: Oceans, 2004, vol. 109, iss. C1, pp. C01006.

DOI: 10.1029/2003JC001995.

Rhie J., Romanowicz B. Excitation of the Earth’s continuous free oscillations by atmosphere-ocean-seafloor coupling. Nature, 2004, vol. 431, pp. 552–556. DOI: 10.1038/nature02942.

Sánchez-Badorrey E., Losada M.A. Standing regular wave groups with oblique incidence: phase averaging and bottom boundary layer in constant depth. Journal of Geophysical Research: Oceans, 2006, vol. 111, iss. C9, pp. C09011. DOI: 10.1029/2005JC003127.

Snodgrass F.E., Hasselmann K.F., Miller G.R., Munk W.H., Powers W.H. Propagation of ocean swells across the Pacific. Philosophical transactions of the royal society of London. Series A. Mathematical and physical sciences, 1966, vol. 259, iss. 103, pp. 431–497. DOI: 10.1098/rsta.1966.0022.

Symonds G., Ranasinghe R. On the formation of rip currents on a plane beach. Proc. 27th International Conference on Coastal Engineering (ICCE) (July 16-21, 2000, Sydney, Australia), pp. 468–481. DOI: 10.1061/40549(276)37.

Tanimoto T. The oceanic excitation hypothesis for the continuous oscillation of the Earth. Geophysical Journal International, 2005, vol. 160, iss. 1, pp. 276–288. DOI: 10.1111/j.1365-246X.2004.02484.x.

Webb S.C. Broadband seismology and noise under the ocean. Reviews of Geophysics, 1992, vol. 36, iss. 1, pp. 105–142. DOI: 10.1029/97RG02287.

Whitham G.B. Linear and Nonlinear Waves. New York: A Wiley-Interscience Publication, 1974. 636 p.

Yoshida K. On the ocean wave spectrum, with special reference to the beat phenomena and the “1-3 minute waves”. Journal of the Oceanographical Society of Japan, 1950, vol. 6, iss. 2, pp. 49–56. DOI: 10.5928/KAIYOU1942.6.2_49.

(+) Read online

Abstract views: 9
PDF Downloads: 0
Published
2022-02-10
How to Cite
Sergey V. Yakovenko, Vyacheslav A. Shvets, & Sergey S. Budrin. (2022). REGIONAL FEATURES OF INFRAGRAVITY SEA WAVES IN THE RANGE FROM 20 TO 300 SECONDS. Hydrosphere. Hazard Processes and Phenomena, 3(4), 355–372. https://doi.org/10.34753/HS.2021.3.4.355

Downloads

Download data is not yet available.