LIGTHNING ACTIVITY IN THE TYPHOON LEKIMA (2019) ACCORDING TO THE WORLDWIDE LIGHTNING LOCATION NETWORK DATA

Section
Monitoring, experimental and expeditionary research
Keywords: typhoons, Lekima (2019), lightning; the typhoon eyewall, maximum wind radius, eyewall radius;, World Wide Lightning Location Network, ASCAT scatterometer, Japan Meteorological Agency, Joint Typhoon Warning Center
(+) Abstract

Based on the World Wide Lightning Location Network (WWLLN) data, this paper presents analysis of the lightning activity in the typhoon Lekima, which crossed the Northwestern Pacific Ocean 2–14 August 2019 and had destructive impact on the countries of East Asia. It is shown that lightning activity varies significantly at different stages of cyclone evolution and has two maxima within a radius of 1 000 km around the center. The first (14 161 discharges) was recorded on 2 August 2019 at Tropical Depression stage; the second
(13 066 discharges) – on the day of greatest intensity on 8 August 2019, that is almost two times more than on the two previous days of cyclone deepening. The diurnal compositions of lightings relative to the cyclone center in an area with a radius of 1 000 km shows that the formation of ring and spiral structures of lightning from shapeless formations began on the days of the rapid deepening into the typhoon stage, and on the day of greatest intensity, an accumulation of lightning appeared in the central area with a radius of 100 km, which identifies the “eyewall”. The presence of ring structures made it possible to demonstrate the previously published method for estimating of the eyewall characteristics according to WWLLN data. The results of the comparison of the obtained estimates with the structures of the typhoon eye cloud wall from satellite images, as well as with ones obtained from the scatterometer data and from the JMA and JTWC best tracks, are presented.

(+) About the author(s)

Mikhail S. Permyakov,
V.I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia

eLibrary (РИНЦ)
SPIN-
код

ORCID ID

Scopus ID

Прочие (WoS, Researcher ID)

4751-4760

0000-0001-6919-0496

6602543586

J-9088-2018

Tatyana I. Kleshcheva,
V.I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia

eLibrary (РИНЦ)
SPIN-
код

ORCID ID

Scopus ID

Прочие (WoS, Researcher ID)

3828-7554

0000-0003-2951-864X

55973350900

J-8036-2018

Ekaterina Yu. Potalova,
V.I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia

eLibrary (РИНЦ)
SPIN-
код

ORCID ID

Scopus ID

Прочие (WoS, Researcher ID)

5301-6649

0000-0002-6297-2628

15081414600

AAO-2290-2020

(+) References

Evdokimova L.I. Tropicheskie tsiklony [Tropical cyclones]. Ezhemesyachnyi gidrometeorologicheskii byulleten' DVNIGMI [Monthly hydrometeorological bulletin of the Far Eastern Research Institute], 2019, August, pp. 5-1–5-21. (In Russian).

Abarca S.F., Corbosiero K.L., Vollaro D. The World Wide Lightning Location Network and convective activity in tropical cyclones. Monthly Weather Review, 2011, vol. 139, iss. 1, pp. 175–191. DOI: 10.1175/2010MWR3383.1.

Bovalo C., Barthe C., Yu N., Bègue N. Lightning activity within tropical cyclones in the South West Indian Ocean. Journal of Geophysical Research: Atmospheres, 2014, vol. 119, iss. 13,

pp. 8231–8244. DOI: 10.1002/2014JD021651.

DeMaria M., DeMaria T.R., Knaff J.A., Molenar D. Tropical cyclone lightning and rapid intensity change. Monthly Weather Review, 2012, vol. 140, iss. 6, pp. 1828–1842. DOI: 10.1175/MWR-D-11-00236.1.

Houze R.A. Jr. Clouds in tropical cyclones. Monthly Weather Review, 2010, vol. 138, iss. 2, pp. 293–344. DOI: 10.1175/2009MWR2989.1.

Hutchins M.L., Holzworth R.H., Rodger C.J., Heckman S., Brundell J.B. WWLLN Absolute Detection Efficiencies and the Global Lightning Source Function. Geophysical Research Abstracts, 2012, vol. 14, p. 12917.

Kishimoto K. Revision of JMA’s Early Stage Dvorak Analysis and Its Use to Analyze Tropical Cyclones in the Early Developing Stage. RSMC Tokyo-Typhoon Center. Technical Review, 2008, no. 10, pp. 1–12.

Knapp K.R., Kruk M.C. Quantifying interagency differences in tropical cyclone best-track wind speed estimates. Monthly Weather Review, 2010, vol. 138, iss. 4, pp. 1459–1473. DOI: 10.1175/2009MWR3123.1.

Kossin J.P, Knaff J.A., Berger H.I., Herndon D.C., Cram Th.A., Velden Ch.S., Murnane R.J., Hawkins J.D. Estimating hurricane wind structure in the absence of aircraft reconnaissance. Weather and Forecasting, 2007, vol. 22, iss. 1, pp. 89–101. DOI: 10.1175/WAF985.1.

Molinari J., Moore P.K., Idone V.P., Henderson R.W., Saljoughy A.B. Cloud-to-ground lightning in hurricane Andrew. Journal of Geophysical Research: Atmospheres, 1994, vol. 99, iss. D8, pp. 16665–16676. DOI: 10.1029/94JD00722.

Molinari J., Moore P., Idone V. Convective structure of hurricanes as revealed by lightning locations. Monthly Weather Review, 1999, vol. 127, iss. 4, pp. 520–534. DOI: 10.1175/1520-0493(1999)127<0520:CSOHAR>2.0.CO;2.

Olander T.L., Velden C.S. The advanced Dvorak technique: continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Weather and Forecasting, 2007, vol. 22, iss. 2, pp. 287–298. DOI: 10.1175/WAF975.1.

Pan L.X., Qie X.S., Liu D.X., Wang D.F., Yang J. The lightning activities in super typhoons over the Northwest Pacific. Science China Earth Sciences, 2010, vol. 53, iss. 8, pp. 1241–1248. DOI: 10.1007/s11430-010-3034-z.

Permyakov M.S., Kleshcheva T.I., Potalova E.Yu. Otsenki kharakteristik oblachnoi steny glaza taifunov po dannym skatterometrov ASCAT [Estimates of the characteristics of cloud wall of the typhoon eye according to ASCAT scatterometers data]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the Earth from space], 2018, vol. 15, no. 7, pp. 249-258. (In Russian; abstract in English). DOI: 10.21046/2070-7401-2018-15-7-249-258.

Permyakov M., Kleshcheva T., Potalova E., Holzworth R.H. Characteristics of typhoon eyewalls according to World Wide Lightning Location Network data. Monthly Weather Review, 2019, vol. 147, iss. 11, pp. 4027–4043. DOI: 10.1175/MWR-D-18-0235.1.

Permyakov M.S., Potalova E.Yu., Droga A.N., Shevtsov B.M. Fields of lightnings discharges in typhoons. Izvestia. Atmospheric and Oceanic Physics, 2017, vol. 54, iss. 9, pp. 1194–1201.

DOI: 10.1134/S0001433818090268. (Russ. ed.: Permyakov M.S., Potalova E.Yu., Droga A.N., Shevtsov B.M. Polya molnievykh razryadov v taifunakh. Issledovaniya Zemli iz Kosmosa, 2017, no. 4, pp. 59–67. DOI: 10.7868/S0205961417040066).

Permyakov M.S., Potalova E.Yu., Kleshcheva T.I. Thunderstorm activity in the Primorsky krai. Russian Meteorology and Hydrology, 2019, vol. 44, no. 12, pp. 818–824.

DOI: 10.3103/S1068373919120045. (Russ. ed.: Permyakov M.S., Potalova E.Yu., Kleshcheva T.I. Grozovaya aktivnost' v Primorskom krae. Meteorologiya i gidrologiya, 2019, no. 12, pp. 43–52).

Permyakov M.S., Potalova E.Yu., Shevtsov B.M., Cherneva N.V., Holzworth R.H. Thunderstorm activity and the structure of tropical cyclones. Atmospheric and Oceanic Optics, 2015, vol. 28, iss. 6, pp. 585–590. DOI: 10.1134/S1024856015060123. (Russ. ed.: Permyakov M.S., Potalova E.Yu., Shevtsov B.M., Cherneva N.V., Holzworth R.H. Grozovaya aktivnost' i struktura tropicheskikh tsiklonov. Optika atmosfery i okeana, 2015, vol. 28, no. 7, pp. 638–643. DOI: 10.15372/AOO20150706).

Potalova E.Y., Permyakov M.S., Kleshcheva T.I. Mesoscale structure of tropical cyclones in the surface wind field. Russian Meteorology and Hydrology, 2013, vol. 38, iss. 11, pp. 735–740. DOI: 10.3103/S1068373913110022. (Russ. ed.: Potalova E.Yu., Permyakov M.S., Kleshcheva T.I. Mezomasshtabnaya struktura tropicheskikh tsiklonov v pole privodnogo vetra. Meteorologiya i gidrologiya, 2013, no. 11, pp. 22–29).

Rodger C.J., Werner S., Brundell B.J., Lay E.H., Thomson N.R., Holzworth R.H., Dowden R.L. Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): initial case study. Annales Geophysicae, 2006, vol. 24, iss. 12, pp. 3197–3214. DOI: 10.5194/angeo-24-3197-2006.

Simpson J., Ritchie E., Holland G.J., Halverson J., Stewart S. Mesoscale interactions in tropical cyclones genesis. Monthly Weather Review, 1997, vol. 125, iss. 10, pp. 2643–2661. DOI: 10.1175/1520-0493(1997)125<2643:MIITCG>2.0.CO;2.

Vagasky Ch. Enveloped eyewall lightning: The EEL Signature in tropical cyclones. Journal of Operational Meteorology, 2017, vol. 5, no. 14, pp. 171–179. DOI: 10.15191/nwajom.2017.0514.

Velden Ch., Harper B., Wells F., Beven J.L. II, Zehr R., Olander T., Mayfield M., Guard Ch., Lander M., Edson R., Avila L., Burton A., Turk M., Kikuchi A., Christian A., Caroff Ph., McCrone P. The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bulletin of the American Meteorological Society, 2006, vol. 87, iss. 9, pp. 1195–1210. DOI: 10.1175/BAMS-87-9-1195.

Verhoef A., Portabella M., Stoffelen A. High-resolution ASCAT scatterometer winds near the coast. IEEE Transactions on Geoscience and Remote Sensing, 2012, vol. 50, iss. 7, pp. 2481–2487. DOI: 10.1109/TGRS.2011.2175001.

Wimmers A.J., Velden C.S. Objectively determining the rotational center of tropical cyclones in passive microwave satellite imagery. Journal of Applied Meteorology and Climatology, 2010, vol. 49, iss. 9, pp. 2013–2034. DOI: 10.1175/2010JAMC2490.1.

(+) Read online

Abstract views: 8
PDF Downloads: 0
Published
2022-02-10
How to Cite
Mikhail S. Permyakov, Tatyana I. Kleshcheva, & Ekaterina Yu. Potalova. (2022). LIGTHNING ACTIVITY IN THE TYPHOON LEKIMA (2019) ACCORDING TO THE WORLDWIDE LIGHTNING LOCATION NETWORK DATA. Hydrosphere. Hazard Processes and Phenomena, 3(4), 391–403. https://doi.org/10.34753/HS.2021.3.4.391

Downloads

Download data is not yet available.