Monitoring, experimental and expeditionary research
  • Tatiana S. Gubareva Water Problems Institute RAS, Mos-cow, Russia; Pacific Geographical Institute FEB RAS, Vladivostok, Rus-sia
  • Sergei Yu. Lupakov Pacific Geographical Institute FEB RAS, Vladivostok, Russia; Water Problems Institute RAS, Mos-cow, Russia
  • Boris I. Gartsman Water Problems Institute RAS, Mos-cow, Russia; Pacific Geographical Institute FEB RAS, Vladivostok, Russia
  • Vladimir V. Shamov Pacific Geographical Institute FEB RAS, Vladivostok, Russia https://orcid.org/0000-0001-9310-1836
  • Alexey V. Rubtsov Siberian Federal University, Krasnoyarsk, Russia https://orcid.org/0000-0002-9663-4344
  • Nadezhda K. Kozhevnikova FSC of the East Asia Terrestrial Bio-diversity FEB RAS, Vladivostok, Russia https://orcid.org/0000-0003-0186-5906
Keywords: transpiration, stem sap flow, catchment, Manchurian birch, trunk heat balance method, Ussuri river basin
(+) Abstract

Study of seasonal dynamics and evapotranspiration volume of forested catchments (mainly forest stand transpiration) is the relevant objective for fundamental knowledge and practical applications. However, there are many difficulties: labor efforts of direct observations, many factors affecting against each other, observational data scaling and so on. As a result, evapotranspiration during hydrological modeling is determined by the leftover principle and simplified techniques, leading to wrong representation of water balance structure.

The presented article deals with the first results of our research group focused on setting up field measurements of xylem sap flow using trunk sap flow measuring sensors as well as development of sap flow assessment methods for individual trees and whole catchment.

The investigations were performed for mixed coniferous-broad leaved forests at the territory of the Central Sikhote-Alin’ within Verkhneussuriyskiy biogeocenotical station of FSC of the East Asia Terrestrial Biodiversity FEB RAS. This site is used for water balance measuring surveys from 2011. Sap flow was measured continuously during June-October of 2019 on one of the local dominant tree species. Apparently, such investigations are novel for the Russian Far East region.

It is expected that direct sap flow measurements for individual trees refinement methods, data scaling and its integration to the hydrometeorological observations will help to make a comprehensive analysis of catchments water balance and to integrate measured data into hydrological models.

(+) About the author(s)

Tatiana S. Gubareva,
Water Problems Institute RAS, Mos-cow, Russia; Pacific Geographical Institute FEB RAS, Vladivostok, Rus-sia

E-mail: tgubareva@bk.ru
eLibrary (РИНЦ) SPIN-код: 1182-6988
Scopus ID: 18436324800
ORCID iD: 0000-0002-4788-0784

Sergei Yu. Lupakov,
Pacific Geographical Institute FEB RAS, Vladivostok, Russia; Water Problems Institute RAS, Mos-cow, Russia

E-mail: rbir@mail.ru
eLibrary (РИНЦ) SPIN-код: 9365-4537
Scopus ID: 57195678222
ORCID iD: 0000-0002-5804-2604

Boris I. Gartsman,
Water Problems Institute RAS, Mos-cow, Russia; Pacific Geographical Institute FEB RAS, Vladivostok, Russia

E-mail: gartsman@inbox.ru
eLibrary (РИНЦ) SPIN-код:
Scopus ID:

Vladimir V. Shamov,
Pacific Geographical Institute FEB RAS, Vladivostok, Russia

E-mail: vlshamov@yandex.ru
eLibrary (РИНЦ) SPIN-код:
Scopus ID:

Alexey V. Rubtsov,
Siberian Federal University, Krasnoyarsk, Russia

E-mail: alexeyruss@gmail.com
eLibrary (РИНЦ) SPIN-код:
Scopus ID:

Nadezhda K. Kozhevnikova,
FSC of the East Asia Terrestrial Bio-diversity FEB RAS, Vladivostok, Russia

E-mail: nkozhevnikova@biosoil.ru
eLibrary (РИНЦ) SPIN-код:
Scopus ID:

(+) References

Benkova A.V., Rubtsov A.V., Benkova V.E., Shashkin A.V. Sezonnaya dinamika sokodvizheniya u derev'ev Larix sibirica v Kras-noyarskoi lesostepi [Seasonal sap flow dynamics in Larix sibirica trees growing in the Krasnoyarsk forest-steppe]. Zhurnal Sibirskogo federal'nogo unviversiteta. Biologiya. [Journal of Siberian Federal University. Biology], 2019, vol. 12, iss. 1, pp. 32-47. (In Russian; abstract in English). DOI: 10.17516/1997-1389-0071.

Boldeskul A.G., Shamov V.V., Gartsman B.I., Kozhevnikova N.K. Ionnyi sostav geneticheskikh tipov vod malogo rechnogo basseina: statsionarnye issledovaniya v Tsentral'nom Sikhote-Aline [Main ions in water of different genetic types in a small river basin: case experi-mental studies in Central Sikhote-Alin]. Tikhookeanskaya geologiya [Tikhookeanskaya geologiya], 2014, vol. 33, no. 2, pp. 90-101. (In Russian; abstract in English).

Čermák J. Solar equivalent leaf area as the effi-cient biometric parameter of individual leaves, trees and stands. Tree Physiology, 1989, vol. 5, no. 3. P. 269-289. DOI: 10.1093/treephys/5.3.269

Čermák J., Deml M., Penka M. A new method of sap flow rate determination in trees. Biologia Plantarum (Praha), 1973, vol. 15, no. 3, pp. 171-178.

Čermák J., Kučera J. Scaling up transpiration da-ta between trees, stands and watersheds. Silva Carelica, 1990, vol. 15, pp. 101-120.

Čermák J., Kučera J., Nadezhdina N. Sap flow measurements with some thermodynamic meth-ods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, 2004, vol. 18, no. 5, pp. 529-546. DOI: 10.1007/s00468-004-0339-6

Chiesi M., Maselli F., Bindi M., Fibbi L., Bonora L., Raschi A., Tognetti R., Čermák J., Nadezhdi-na N. Calibration and application of FOREST-BCG in a Mediterraen area by the use of conven-tional and remote sensing data. Ecological Mod-elling, 2002, vol. 154, iss. 3, pp. 251-262. DOI: 10.1016/S0304-3800(02)00057-1

Clearwater M.J., Meinzer F.C., Andrade J.L., Goldstein G., Holbrook N.M. Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiology, 1999, vol. 19, iss. 10, pp. 681-687. DOI: 10.1093/treephys/19.10.681

De Schepper V., van Dusschoten D., Copini P., Jahnke S., Steppe K. MRI links stem water con-tent to stem diameter variations in transpiring trees. Journal of Experimental Botany, 2012, vol. 63, iss. 7, pp. 2645-2653. DOI:10.1093/jxb/err445

Dye P.J., Olbrich B.W., Poulter A.G. The influ-ence of growth rings in Pinus patula on heat pulse velocity and sap flow measurement. Journal of Experimental Botany, 1991, vol. 42, iss. 7, pp. 867-870. DOI:10.1093/jxb/42.7.867

Edwards W.R.N., Booker R.E. Radial variation in the axial conductivity of Populus and its sig-nificance in heat pulse velocity measurement. Journal of Experimental Botany, 1984, vol. 35, iss. 4, pp. 551-561. DOI: 10.1093/jxb/35.4.551

Forster M.A. How significant is nocturnal sap flow? Tree Physiology, 2014, vol. 34, iss. 7, pp. 757-765. DOI: 10.1093/treephys/tpu051

Gartsman B.I., Shamov V.V. Field studies of runoff formation in the far east region based on modern observational instruments. Water Re-sources, 2015, vol. 42, no. 6, pp. 766-775. DOI: 10.1134/S0097807815060044 (In Russ. ed.: Gartsman B.I., Shamov V.V. Naturnye is-sledovaniya stokoformirovaniya v Dal'nevos-tochnom regione na osnove sovremennykh sredstv nablyudenii. Vodnye resursy, 2015, vol. 42, no. 6, pp. 589 599. DOI: 10.7868/S0321059615060048)

Granier A. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Annales des sciences forestières, INRA/EDP Sci-ences, 1985, 42 (2), pp. 193-200.

Hatton T.J., Catchpole E.A., Vertessy R.A. Inte-gration of sapflow velocity to estimate plant wa-ter use. Tree Physiology, 1990, vol. 6, iss. 2, pp. 201-209. DOI: 10.1093/treephys/6.2.201

Huber B. Beobachtung und Messung pflanzlicher Saftströme. Berichte der Deutschen Botanischen Gesellschaft, 1932, vol. 50, pp. 89-109.

Jarvis P.G., McNaughton K.G. Stomatal control of transpiration: scaling up from leaf to region. Advances in Ecological Research, 1986, vol. 15, pp. 1-49. DOI: 10.1016/S0065-2504(08)60119-1

Jasechko S., Sharp Z.D., Gibson J.J., Birks S.J., Yi Y., Fawcett P.J. Terrestrial water fluxes dom-inated by transpiration. Nature, 2013, vol. 496, pp. 347-350. DOI: 10.1038/nature11983

Klige R.K., Danilov I.D., Konishchev V.N. Is-toriya gidrosfery [The history of hydrosphere]. Moscow, Publ. Scientific world, 1998. 368 p. (In Russian; abstract in English).

Kučera J., Čermák J., Penka M. Improved ther-mal method of continual recording the transpira-tion flow rate dynamics. Biologia Plantarum (Praha), 1977, vol. 19, no. 6, pp. 413-420.

Lundblad M., Lagergren F., Lindroth A. Evalua-tion of heat balance and heat dissipation methods for sapflow measurements in pine and spruce. Annals of Forest Science, 2001, vol. 58, no. 6, pp. 625-638. DOI: 10.1051/forest:2001150

Marshall D.C. Measurement of sap flow in coni-fers by heat transport. Plant Physiology, 1958, vol. 33, iss. 6, pp. 385-396. DOI: 10.1104/pp.33.6.385

Meiresonne L., Nadezhdina N., Čermák J., Slycken J. Van, Ceulemans R. Measured sap flow and simulated transpiration from a poplar stand in Flanders (Belgium). Agricultural and Forest Meteorology. 1999. Vol. 96. Iss. 4. P. 165-179. DOI: 10.1016/S0168-1923(99)00066-0

Meiresonne L., Sampson D.A., Kowalski A.S., Janssens I.A., Nadezhdina N., Čermák J., Slyck-en J. Van, Ceulemans R. Water flux estimates from a Belgian Scots pine stand: a comparison of different approaches. Journal of Hydrology, 2002, vol. 270, iss. 3-4, pp. 230-252. DOI: 10.1016/S0022-1694(02)00284-6

Miralles D.G., Jeu R.A.M. De, Gash J.H., Holmes T.R.H., Dolman A.J. Magnitude and var-iability of land evaporation and its components at the global scale. Hydrology and Earth System Sciences, 2011, vol. 15, iss. 3, pp. 967-981. DOI: 10.5194/hess-15-967-2011

Monteith J.L. Evaporation and environment. Symposia of the Society for Experimental Biology, 1965, vol. 19, pp. 205-234.

Nadezhdina N., Čermák J., Ceulemans R. Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors. Tree Physiology, 2002, vol. 22, iss. 13, pp. 907-918. DOI: 10.1093/treephys/22.13.907

O'Grady A.P., Eamus D., Hutley L.B. Transpira-tion increases during the dry season: patterns of tree water use in eucalypt open-forests of north-ern Australia. Tree Physiology, 1999, vol. 19, iss. 9, pp. 591-597. DOI: 10.1093/treephys/19.9.591

Oltchev A., Čermák J., Gurtz J., Tischenko A., Kiely G., Nadezhdina N., Zappa M., Lebedeva N., Vitvar T., Albertson J.D., Tatarinov F., Tischenko D., Nadezhdin V., Kozlov B., Ibrom A., Vygodskaya N., Gravenhorst G. The re-sponse of the water fluxes of the boreal forest region at the Volga’s source area to climatic and land-use changes. Physics and Chemistry of the Earth, 2002a, vol. 27, iss. 9-10, pp. 675-690. DOI: 10.1016/S1474-7065(02)00052-9

Oltchev A., Čermák J., Nadezhdina N., Tatarinov F., Tischenko A., Ibrom A., Gravenhorst G. Transpiration of a mixed forest stand: field meas-urements and simulation using SVAT models. Boreal Environment Research, 2002b, vol. 7, no. 3, pp. 389-397.

Phillips N., Oren R., Zimmermann R. Radial pat-terns of xylem sap flow in non-, diffuse- and ring-porous tree species. Plant, Cell and Envi-ronment, 1996, vol. 19, iss. 8, pp. 983-990. DOI: 10.1111/j.1365-3040.1996.tb00463.x

Phillips N.G., Ryan M.G., Bond B.J., McDowell N.G., Hinckley T.M., Čermák J. Reliance on stored water increases with tree size in three spe-cies in the Pacific Northwest. Tree Physiology, 2003, vol. 23, iss. 4, pp. 237-245. DOI: 10.1093/treephys/23.4.237

Shackel K.A., Johnson R.S., Medawar C.K., Phene C.J. Substantial errors in estimates of sap flow using the heat balance technique on woody stems under field conditions. Journal of the American Society for Horticultural Science, 1992, vol. 117, iss. 2, pp. 351-356. DOI: 10.21273/JASHS.117.2.351

Tatarinov F., Kučera J., Cienciala E. The analysis of physical background of tree sap flow meas-urement based on thermal methods. Measurement Science and Technology, 2005, vol. 16, no. 5, pp. 1157-1169. DOI: 10.1088/0957-0233/16/5/016

Tikhova G.P., Pavlov A.G., Pridacha V.B., Sa-zonova T.A. The new hybrid method for measur-ing transpiration sap flows in trees. Sibirskij Le-snoj Zurnal [Siberian Journal of Forest Science], 2017, no. 4, pp. 78-90. (In Russian; abstract in English). DOI: 10.15372/SJFS20170407

Tuzet A., Perrier A., Leuning R. A coupled mod-el of stomatal conductance, photosynthesis and transpiration. Plant, Cell and Environment, 2003, vol. 26, iss. 7, pp. 1097-1116. DOI: 10.1046/j.1365-3040.2003.01035.x

Urban J., Rubtsov A.V., Urban A.V., Shashkin A.V., Benkova V.F. Canopy transpiration of a Larix sibirica and Pinus sylvestris forest in Cen-tral Siberia. Agricultural and Forest Meteorology, 2019, vol. 271, pp. 64-72. DOI: 10.1016/j.agrformet.2019.02.038

Verbeeck H., Steppe K., Nadezhdina N., Beeck M Op de., Deckmyn G., Meiresonne L., Lemeur R., Čermák J., Ceulemans R., Janssens I.A. Stored water use and transpiration in Scots pine: a modeling analysis with ANAFORE. Tree Phys-iology, 2007, vol. 27, iss. 12, pp 1671-1685. DOI: 10.1093/treephys/27.12.1671

Wang H., Tetzlaff D., Soulsby C. Hysteretic re-sponse of sap flow in Scots pine (Pinus sylvestris) to meteorological forcing in a humid low-energy headwater catchment. Ecohydrology, 2019, vol. 12, iss. 6, e2125. DOI: 10.1002/eco.2125

Zang D., Beadle C.L., White D.A. Variation of sap flow velocity in Eucalyptus globulus with position in sapwood and use a correction coeffi-cient. Tree Physiology, 1996, vol. 16, iss.8, pp. 697-703. DOI: 10.1093/treephys/16.8.697

Zeppel M.J.B., Murray B.R., Barton B., Eamus D. Seasonal responses of xylem sap velocity to VPD and solar radiation during drought in a stand of native trees in temperate Australia. Functional Plant Biology, 2004, vol. 31, iss. 5, pp. 461-470. DOI: 10.1071/FP03220

Zhil'tsov A.S. Gidrologicheskaya rol' gornykh khvoino-shirokolistvennykh lesov Yuzhnogo Pri-mor'ya [The hydrological role of mountain conif-erous-deciduous forests of Southern Primorye]. Vladivostok: Publ. Dal'nauka, 2008. 331 p. (In Russian)

(+) Read online

Abstract views: 178
PDF Downloads: 0
How to Cite
Tatiana S. Gubareva, Sergei Yu. Lupakov, Boris I. Gartsman, Vladimir V. Shamov, Alexey V. Rubtsov, & Nadezhda K. Kozhevnikova. (2019). POSSIBILITIES OF CATCHMENT’S TRANSPIRATION ASSESSMENT BASED ON SAP FLOW MEASUREMENTS: THE PROBLEM STATEMENT. Hydrosphere. Hazard Processes and Phenomena, 1(4), 504-532. https://doi.org/10.34753/HS.2019.1.4.504


Download data is not yet available.