DEFORMATIONAL FEATURES OF TSUNAMI

Section
Hazardous processes in the hydrosphere: fundamental and engineering aspects
  • Grigory I. Dolgikh V.I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
  • Stanislav G. Dolgikh V.I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Keywords: tsunami, earthquake, short-term forecast, deformational anomalies, laser strainmeter, GPS receivers, DART systems

Tsunamis are one of the most catastrophic phenomena, causing tremendous destruction and claiming a significant number of lives. The causes of tsunamis can be different: water-quake, underwater landslides and volcanic eruptions. Even cases of tsunami are known as a result of the collapse of a huge mass of rocks in the sea. Scientists from different countries since antiquity have been studying the physics of the occurrence and development of tsunamis. The main direction of research is related to the construction of a short-term forecast of earthquakes. Currently, the traditional method of short-term tsunami forecasting is based only on seismological information (earthquake magnitude, main shock time and epicenter location). An earthquake magnitude exceeding a predetermined threshold value that differs between tsunamigenic zones usually results to a tsunami warning. The scientific significance and relevance of this problem is very high, moreover, it is vital for the majority of the world's population living in coastal regions. As the history of recent decades, especially the events of 2004 and 2011, and even recent years, shows, the efficiency of the tsunami service, to put it mildly, is far from perfect. The misses of catastrophic tsunamis, poor estimation of the energy of the arising tsunamis, false alarms, lead to very sad consequences. This is primarily due to the lack of a reliable short-term tsunami forecast. The works of recent years, based on the use of a distributed network of GPS receivers, DART systems, satellite technologies, are aimed at solving this problem, the final results of which are not yet visible. We believe that solving the problem of short-term tsunami forecast based on remote registration of deformational processes occurring in the source area of the tsunami origin is the most promising area of research, which will be partially confirmed in this paper.

Grigory I. Dolgikh,
V.I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia

E-mail: dolgikh@poi.dvo.ru
eLibrary (РИНЦ) SPIN-код: 5241-3375
ORCID ID: 0000-0002-2806-3834
Scopus ID: 7003888822

Stanislav G. Dolgikh,
V.I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia

E-mail: sdolgikh@poi.dvo.ru
eLibrary (РИНЦ) SPIN-код: 1836-2541
ORCID ID: 0000-0001-9828-5929
Scopus ID: 6604069353

Blewitt G., Kreemer C., Hammond W.C., Plag H.-P., Stein S., Okal E. Rapid determination of earthquake magnitude using GPS for tsunami warning systems. Geophysical Research Letters, 2006, vol. 33, iss. 11, p. L11309. DOI: 10.1029/2006GL026145.

Dolgikh G.I., Kovalev S.N., Koren’ I.A., Ovcharenko V.V. A Two-Coordinate Laser Strainmeter. Izvestiya, Physics of the Solid Earth, 1998, vol. 34, no. 11, pp. 946-950. (Russ. ed.: Dolgikh G.I., Kovalev S.N., Koren' I.A., Ovcharenko V.V. Dvukhkoordinatnyi lazernyi deformograf. Fizika Zemli, 1998, no. 11, pp. 76-81).

Dolgikh G.I., Valentin D.I., Dolgikh S.G., Kovalev S.N., Koren' I.A., Ovcharenko V.V., Fishchenko V.K. Application of horizontally and vertically oriented strainmeters in geophysical studies of transitional zones. Izvestiya, Physics of the Solid Earth, 2002, vol. 38, no. 8, pp. 686-689. (Russ. ed.: Dolgikh G.I., Valentin D.I., Dolgikh S.G., Kovalev S.N., Koren' I.A., Ovcharenko V.V., Fishchenko V.K. Primenenie lazernykh deformografov vertikal'noi i gorizontal'noi orientatsii v geofizicheskikh issledovaniyakh perekhodnykh zon. Fizika Zemli, 2002, no. 8, pp. 69-73).

Dolgikh G.I., Dolgikh S.G., Kovalev S.N., Koren I.A., Ovcharenko V.V., Chupin V.A., Shvets V.A., Yakovenko S.V. Recording of deformation anomaly of a tsunamigenous earthquake using a laser strainmeter. Doklady Earth Sciences, 2007a, vol. 412, no. 1, pp. 74-76. DOI: 10.1134/S1028334X07010163 (Russ. ed.: Dolgikh G.I., Dolgikh S.G., Kovalev S.N., Koren I.A., Ovcharenko V.V., Chupin V.A., Shvets V.A., Yakovenko S.V. Registratsiya deformatsionnoi anomalii tsunamigennogo zemletryaseniya lazernym deformografom. Doklady Akademii nauk, 2007a, vol. 412, no. 1, pp. 104-106).

Dolgikh G.I., Dolgikh S.G., Kovalev S.N., Ovcharenko V.V., Chupin V.A., Shvets V.A., Yakovenko S.V. A deformation method of tsunamigenic earthquakes definition. Doklady Earth Sciences, 2007b, vol. 417, no. 1, pp. 1261-1264. DOI: 10.1134/S1028334X07080296 (Russ. ed.: Dolgikh G.I., Dolgikh S.G., Kovalev S.N., Ovcharenko V.V., Chupin V.A., Shvets V.A., Yakovenko S.V. Deformatsionnyi metod opredeleniya tsunamigennosti zemletryasenii. Doklady Akademii nauk, 2007b, vol. 417, no. 1, pp. 109-112).

Dolgikh G.I. Principles of designing single-coordinate laser strainmeters. Technical Physics Letters, 2011, vol. 37, iss. 3, pp. 204-206. DOI: 10.1134/S1063785011030035 (Russ. ed.: Dolgikh G.I. Printsipy postroeniya odnokoordinatnykh lazernykh deformografov. Pis'ma v zhurnal tekhnicheskoi fiziki, 2011, vol. 37, iss. 5, pp. 24-30).

Gusman A.R., Tanioka Y., Sakai S., Tsushima H. Source model of the great 2011 Tohoku earthquake estimated from tsunami waveforms and crustal deformation data. Earth and Planetary Science Letters, 2012, vol. 341-344, pp. 234-242. DOI: 10.1016/j.epsl.2012.06.006.

Korolev Yu.P. An approximate method of short-term tsunami forecast and the hind casting of some recent events. Natural Hazards and Earth System Sciences, 2011, vol. 11, iss. 11, pp. 3081-3091. DOI: 10.5194/nhess-11-3081-2011.

Song Y.T., Han S.C. Satellite observations defying the long-held tsunami genesis theory. In Tang D. (ed.), Remote Sensing of the Changing Oceans. Springer-Verlag Berlin Heidelberg, 2011, pp. 327-342. DOI: 10.1007/978-3-642-16541-2_17.

Song Y.T., Ji C., Fu L.-L., Zlotnicki V., Shum C. K., Yi Y., Hjorleifsdottir V. The 26 December 2004 Tsunami source estimated from satellite radar altimetry and seismic waves. Geophysical Research Letters, 2005, vol. 32, iss. 20, p. L20601. DOI: 10.1029/2005GL023683.

Stein S., Okal E.A. Speed and size of the Sumatra earthquake. Nature, 2005, vol. 434, no. 7033, pp. 581-582. DOI: 10.1038/434581a.

Tang L., Titov V.V., Moore C., Wei Y. Real‐time assessment of the 16 September 2015 Chile tsunami and implications for near‐field forecast. Pure and Applied Geophysics, 2016, vol. 173, iss. 2, pp. 369-387. DOI: 10.1007/s00024-015-1226-3.

Titov V.V., Song Y.T., Tang L., Bernard E.N., Bar-Sever Y., Wei Y. Consistent estimates of tsunami energy show promise for improved early warning. Pure and Applied Geophysics, 2016, vol. 173, iss. 12, pp. 3863-3880. DOI: 10.1007/s00024-016-1312-1.

Williamson A.L., Newman A.V. Suitability of open‐ocean instrumentation for use in near‐field tsunami early warning along seismically active subduction zones. Pure and Applied Geophysics, 2018, vol. 176, iss. 7, pp. 3247–3262. DOI: 10.1007/s00024-018-1898-6.

Xu Z., Song Y.T. Combining the all-source Green’s functions and the GPS-derived source for fast tsunami prediction-illustrated by the March 2011 Japan tsunami. Journal of Atmospheric and Oceanic Technology, 2013, vol. 30, iss. 7, pp. 1542-1554. DOI: 10.1175/JTECH-D-12-00201.1.


Abstract views: 31
PDF Downloads: 0
Published
2020-09-30
How to Cite
Grigory I. Dolgikh, & Stanislav G. Dolgikh. (2020). DEFORMATIONAL FEATURES OF TSUNAMI. Hydrosphere. Hazard Processes and Phenomena, 2(3), 260-271. https://doi.org/10.34753/HS.2020.2.3.260

Downloads

Download data is not yet available.