USE OF WAVELET ANALYSIS IN THE STUDY OF THE BOTTOM RELIEF OF THE PETER THE GREAT BAY OF THE SEA OF JAPAN

Section
Monitoring, experimental and expeditionary research
  • Aleksandr N. Samchenko V.I. Il’ichev Pacific Oceanological Institute, FEB RAS, Vladivostok, Russia
  • Igor O. Yaroshchuk V.I. Il’ichev Pacific Oceanological Institute, FEB RAS, Vladivostok, Russia
Keywords: relief, bathymetry, wavelet analysis, tidal waves, internal gravity waves, Peter the Great Bay
(+) Abstract

The paper provides an example of the application of wavelet analysis to the bottom topography of the Peter the Great Bay of the Sea of Japan and the depth slope. The bottom micro- and mesorelief is formed by hydrodynamic processes. Thus, the study of various landforms and their position can show where the dynamics of internal gravity waves is most pronounced. A digital model of the relief of the bay, depth dump and adjacent land has been created. The digital model of the seabed and land elevation is based on the available global databases GEBKO and ASTER, as well as bathymetric measurements obtained using the ship's echo sounder. The preparation of bathymetric data on the bottom of the bay for further application of mathematical methods is considered. Interpolation with regression of Gaussian processes was used at the first stage of creating a digital elevation model. Further, smoothing was carried out due to linear interpolation and an increase in the cell size of the digital elevation model. Due to the coarsening of the model, the measurement error has decreased. On the basis of wavelet analysis and the method of natural orthogonal functions, various groups of landforms were identified and contoured according to their height characteristics. Sedimentary waves were identified in the bay. The height of sedimentary waves does not exceed 8 m, and the distances between the peaks vary within 1 km. The structural parameters of the bottom topography for each profile of the wavelet analysis are identified. Differences are observed in the shape of the wavelet patterns for different types of sedimentary waves. So, for small sedimentary waves (up to 2 m high) are evenly distributed along the profile and they are having even bifurcations. Sedimentary waves with a height of more than 2 m are grouped in the central part of the bay and in the wavelet analysis they are also distinguished by local bifurcations, but with a higher dimension.

(+) About the author(s)

Aleksandr N. Samchenko,
V.I. Il’ichev Pacific Oceanological Institute, FEB RAS, Vladivostok, Russia

eLibrary (РИНЦ) SPIN-код: 1463-8650

ORCID ID: 0000-0002-5184-0718

Scopus ID: 55764328700

Igor O. Yaroshchuk,
V.I. Il’ichev Pacific Oceanological Institute, FEB RAS, Vladivostok, Russia

eLibrary (РИНЦ) SPIN-код: 2412-7709

ORCID ID: 0000-0002-3212-9752

Scopus ID: 6602795293

(+) References

Astaf'eva N.M. Wavelet analysis: basic theory and some applications. Physics-Uspekhi (Advances in Physical Sciences), 1996, vol. 39,

iss. 11, pp. 1085–1108. DOI: 10.1070/PU1996v039n11ABEH000177 (In Russ. ed.: Astaf'eva N.M. Veivlet-analiz: osnovy teorii i primenenie. Uspekhi fizicheskikh nauk, 1996, vol. 166, iss. 11, pp. 1145–1170. DOI: 10.3367/UFNr.0166.199611a.1145).

Burnaev E.V., Panov M.E., Zaytsev A.A. Regressiya na osnove nestatsionarnykh gaussovskikh protsessov s baiesovskoi regulyarizatsiei [Regression Based on Nonstationary Gaussian Processes with Bayesian Regularization]. Informatsionnye protsessy [Information Processes], 2015, vol.15, iss. 3, pp. 298–313. (In Russian; abstract in English).

Chernikov A.G, Libina N.V. The use of Markov hypsotomography for geological studies in oceanology. Oceanology, 2011, vol. 51, iss. 3, pp. 528–532. DOI: 10.1134/S0001437011030040. (In Russ. ed.: Chernikov A.G., Libina N.V. Ispol'zovanie markovskoi gispotomografii pri geologicheskikh issledovaniyakh v okeanologii. Okeanologiya, 2011, vol. 51, iss. 3, pp. 561–565).

Devdariani A.S. Matematicheskii analiz v geomorfologii [Mathematical analysis in geomorphology]. V.V. Longinov (ed.). Moscow, Publ. Nedra, 1967. 156 p. (In Russian).

Dolgikh G.I., Novotryasov V.V., Samchenko A.N., Yaroshchuk I.O. About a mechanism of the formation of sedimentary waves on the shelf of the sea of Japan. Doklady Earth Sciences, 2015, vol. 465, iss. 2, pp. 1278–1282. DOI: 10.1134/S1028334X15120090. (In Russ. ed.: Dolgikh G.I., Novotryasov V.V., Samchenko A.N., Yaroshchuk I.O. Ob odnom mekhanizme obrazovaniya osadochnykh voln na shel'fe Yaponskogo moray. Doklady akademii nauk, 2015, vol. 465, iss. 5, pp. 593–597. DOI: 10.7868/S0869565215350169).

Dremin I.M., Ivanov O.V., Nechitailo V.A. Wavelets and their uses. Physics-Uspekhi (Advances in Physical Sciences), 2001,

vol. 44, iss. 5, pp.447–478. DOI: 10.1070/PU2001v044n05ABEH000918 (In Russ. ed.: Dremin I.M., Ivanov O.V., Nechitailo V.A. Veivlety i ikh ispol'zovanie. Uspekhi fizicheskikh nauk, 1996,

vol. 171, iss. 5, pp. 465–501. DOI: 10.3367/UFNr.0171.200105a.0465).

Falorni G., Teles V., Vivoni E.R., Bras R.L., Amaratunga K.S. Analysis and characterization of the vertical accuracy of digital elevation models from the Shuttle Radar Topography Mission. Journal of Geophysical Research: Earth Surface, 2005, vol. 110, iss. F2, F02005. DOI: 10.1029/2003JF000113.

Florinsky I.V. An illustrated introduction to general geomorphometry. Progress in Physical Geography, 2017, vol. 41, iss. 6, pp. 723–752. DOI: 10.1177/0309133317733667.

Florinsky I.V., Skrypitsyna T.N., Bliakharskii D.P., Ishalina O.S., Kiseleva A.S. Towards the modeling of glacier microtopography using high-resolution data from unmanned aerial survey. The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2020, vol. XLIII-B2-2020 (XXIV ISPRS Congress, Commission II), pp 1065–1071. DOI: 10.5194/isprs-archives-XLIII-B2-2020-1065-2020.

Hughes Clarke J.E. The Impact of Acoustic Imaging Geometry on the Fidelity of Seabed Bathymetric Models. Geosciences, 2018, vol. 8, iss. 4, 109. DOI: 10.3390/geosciences8040109.

Korotchenko R.A., Samchenko A.N., Yaroshchuk I.O. Primenenie mnogomernogo EOF-analiza v geoinformatike [Application of multidimensional EOF-analysis in geoinformatics]. Tsifrovaya obrabotka signalov [Digital signal processing], 2013, iss. 3, pp. 17–20. (In Russian; abstract in English).

Korotchenko RA, Samchenko AN, Yaroshchuk I.O. Primenenie statisticheskikh metodov v izuchenii rel'efa shel'fovoi zony na primere zaliva Pos'eta (Yaponskoe more) [Application of statistical methods to study the shelf zone relief of the Posyet gulf of the sea of Japan]. Vestnik Dal'nevostochnogo otdeleniya Rossiiskoi akademii nauk [Vestnik of Far Eastern Branch of Russian Academy of Sciences], 2011, iss. 6 (160), pp. 54–59. (In Russian; abstract in English).

Korotchenko R.A., Samchenko A.N., Yaroshchuk I.O. The spatiotemporal analysis of the bottom geomorphology in Peter the Great Bay of the Sea of Japan. Oceanology, 2014, vol. 54, iss. 4,

pp. 497–504. DOI: 10.1134/S0001437014030047. (In Russ. ed.: Korotchenko R.A., Samchenko A.N., Yaroshchuk I.O. Prostranstvenno-vremennoi analiz geomorfologii okeanicheskogo dna zaliva Petra Velikogo (Yaponskoe more). Okeanologiya, 2014, vol. 54, iss. 4, pp. 538–545. DOI: 10.7868/S0030157414030046).

Lecours V., Dolan M.F.J., Micallef A., Lucieer V.L. A review of marine geomorphometry, the quantitative study of the seafloor. Hydrology and Earth System Sciences, 2016, vol. 20, iss. 8, pp. 3207–3244. DOI: 10.5194/hess-20-3207-2016.

Levchenko O.V., Roslyakov A.G., Polyakov A.S., Zverev A.S., Merklin L.R. Novye dannye ob osadochnykh volnakh na zapadnom kontinental'nom sklone Kaspiiskogo morya [New data on sedimentary waves on the western continental slope of the Caspian Sea]. Doklady akademii nauk [Doklady Earth Sciences], 2008, vol. 420, iss. 4, pp. 537–542. (In Russian).

Samchenko A.N. Ispol'zovanie singulyarnogo spektral'nogo analiza v geomorfologicheskikh issledovaniyakh yuzhnogo Primor'ya i zaliva Petra Velikogo Yaponskogo morya [Use of singular spectral analysis in geomorphological studies in the Southern Primorye and the Peter the Great Bay of the Sea of Japan]. Geomorfologiya [Geomorfologiya], 2019, iss. 3, pp. 36–45. DOI: 10.31857/S0435-42812019336-45. (In Russian; abstract in English).

Samchenko A.N., Yaroshchuk I.O. Akusticheskie parametry rykhlykh donnykh otlozhenii zaliva Petra Velikogo (Yaponskoe more) [Acoustic parameters of friable bottom sediments of the Peter the Great Bay of the Sea of Japan] Vestnik Dal'nevostochnogo otdeleniya Rossiiskoi akademii nauk [Vestnik of Far Eastern Branch of Russian Academy of Sciences], 2017, iss. 5, pp. 130–136. (In Russian; abstract in English).

Turcotte D.L. Fractals and Chaos in Geology and Geophysics. Cambridge: Cambridge University Press, 1997. 398 p. DOI: 10.1017/CBO9781139174695.

Xu T., Moore I.D., Gallant J.C. Fractals, fractal dimensions and landscapes – a review. Geomorphology, 1993, vol. 8, iss. 4, pp. 245–262. DOI: 10.1016/0169-555X(93)90022-T.

Yarmolenko A.S., Skobenko O.V. Application of the theory of wavelets for compression and filtering of geoinformation. Journal of Mining Institute, 2018, vol. 234, pp. 612–623. DOI: 10.31897/PMI.2018.6.612. (In Russ. ed.: Yarmolenko A.S., Skobenko O.V. Primenenie teorii veivletov pri szhatii i fil'tratsii geoinformatsii. Zapiski Gornogo instituta, 2018, vol. 234, pp. 612–623).

(+) Read online

Abstract views: 22
PDF Downloads: 0
Published
2021-07-01
How to Cite
Aleksandr N. Samchenko, & Igor O. Yaroshchuk. (2021). USE OF WAVELET ANALYSIS IN THE STUDY OF THE BOTTOM RELIEF OF THE PETER THE GREAT BAY OF THE SEA OF JAPAN. Hydrosphere. Hazard Processes and Phenomena, 3(2), 155-165. https://doi.org/10.34753/HS.2021.3.2.155

Downloads

Download data is not yet available.