Assessing the quality of modeling and forecasting in hydrology – reasoning about the method

Authors

DOI:

https://doi.org/10.34753/HS.2023.5.3.228
+ Keywords

модели стока, гидрологические прогнозы, оценка качества прогнозирования, коэффициент эффективности Нэша-Сатклиффа

+ Abstract

The currently existing hydrological models are provided with extremely limited methodological tools for their calibration, verification, and testing. It seems extremely relevant to develop, on a unified methodological basis, a system of quality assessment for a number of typical hydrological tasks – parameterization and verification of hydrological models, simulation and scenario modeling of the hydrological regime, forecasting, engineering calculations, etc. Without solving this problem, further development and effective practical use of hydrological models are impossible.

The paper demonstrates the logic and, to some extent, the history of the development of some of the most important ideas and approaches used in assessing the quality of modeling and forecasting, as well as to outline some prospects for their development. The necessary systematization of the terms of the subject area under consideration has been carried out, starting with the basic concepts of “prediction” and “forecast”, with consideration of additional definitions: “continuous – aggregated” forecasts; “short-term – long-term” forecasts; “methodological”, “standard”, “ideal”, “inertial”, “regime” forecasts; and etc.

The stages of development of the “skill scores” approach in the development of measures for assessing the quality of hydrological modeling and forecasting are considered, mainly using the example of the emergence and modification of a basic measure for hydrology - the Nash-Sutcliffe efficiency coefficient. Special attention is paid to two decompositions of the NSE measure, demonstrating its reducibility to the basic statistical parameters of the samples of measured and predicted values of the variable – average values, standard deviations and correlation coefficient. A rationale for modifying the NSE estimate by applying it to pre-ranked samples of variable values is proposed. An approach to assessing the quality of modeling and forecasting is formulated based on a consistently statistical approach, using statistical criteria for the similarity of marginal distributions of actual and forecast values of a variable. A number of tasks for future research are outlined in the field of developing methods for assessing the quality of hydrological models and forecasts.

+ Author Biographies

Boris I. Gartsman, Institute of Water Problems RAS

PhD, Dr.Sci.(Geography),

Chief Researcher, Hydroinformatics Lab, Institute of Water Problems RAS;

SPIN 7792-9120

ORCID 0000-0002-5876-7015

ResearcherID Q-5672-2016

Author ID Scopus 24438012800

+ References

Аполлов Б.А., Калинин Г.П., Комаров В.Д. Курс гидрологических прогнозов. Л.: Гидрометеоиздат, 1974. 419 с.

Борщ С.В., Христофоров А.В. Оценка качества прогнозов речного стока // Труды Гидрометеорологического научно-исследовательского центра Российской Федерации. 2015. Т. 355. С. 3–195.

Борщ С.В., Симонов Ю.А., Христофоров А.В. Эффективность моделирования и прогнозирования речного стока. // Гидрологические исследования и прогнозы. № 1 (375). 2020. C. 176–189.

Борщ С.В., Симонов Ю.А., Христофоров А.В. Прогнозирование стока рек России. М.: Изд-во ФГБУ «гидрометцентр России», 2023 г. 200 с.

Наставления по службе прогнозов. Раздел 3. Ч.1. Прогнозы режима вод суши. Л.: Гидрометеоиздат, 1962. 194 с.

Рождественский А.В., Чеботарев А.И. Статистические методы в гидрологии. Л.: Гидрометеоиздат, 1974. 424 с.

Руководство по гидрологической практике ВМО. Сбор и обработка данных, анализ, прогнозирование и другие применения (ВМО №168). Женева: Секретариат ВМО. 1994. 811 с.

Руководство по гидрологическим прогнозам. Вып. 2. Краткосрочный прогноз расхода и уровня воды на реках. Л.: Гидрометеоиздат, 1989. 245 p.

Руководство по гидрологическим прогнозам. Вып. 1. Долгосрочные прогнозы элементов водного режима рек и водохранилищ. Ленинград: Гидрометеоиздат, 1989. 357 p.

Технический регламент ВМО. Том III. Гидрология. (ВМО №49). Женева: Секретариат ВМО. 2006. 140 с.

Beven K.J. Rainfall-runoff Modelling: The Primer. Chichester: Wiley&Sons, 2001. 488 p.

Bogner K., Pappenberger F. Multiscale error analysis, correction, and predictive uncertainty estimation in a flood forecasting system // Water Res. Res. 2011. V. 47 (W07524) P. 24. JRC56973. DOI: 10.1029/2010WR009137.

Gupta H. V., Kling H.; Yilmaz K. K., Martinez G. F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling // J. Hydrol. 2009. Vol. 377. P. 80–91. DOI:10.1016/j.jhydrol.2009. 08.003.

Jolliffe I.T., Stephenson D.B. Forecast verification // Forecast verification: a practitioner’s guide in atmospheric science. Chichester: Wiley&Sons, 2012. 254 p.

Murphy A.H., Winkler R.L. A General Framework for Forecast Verification // Monthly Weather Review. 1987. Vol. 115. P. 1330–1338. DOI:10.1175/1520-493(1987)115<1330:AGFFFV> 2.0.CO;2.

Murphy A. H. Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation Coefficient // Monthly Weather Review. 1988. Vol. 116. P. 2417–2424. DOI:10. 1175/1520-493(1988)1162417:SSBOTM>2.0.CO;2.

Nash J. E.; Sutcliffe J. V. River flow forecasting through conceptual models part I — A discussion of principles // J. Hydrol. 1970. Vol. 10 (3). P. 282–290. DOI:10.1016/0022-1694(70)90255-6.

Wilks D.S. Statistical methods in the atmospheric sciences: an introduction // Int. Geophys. Ser. Academic Press. 1995. Vol. 59. P. 467.

+ Read article online

Downloads

Download data is not yet available.

Published

2024-04-26

How to Cite

Gartsman, B. I. (2024). Assessing the quality of modeling and forecasting in hydrology – reasoning about the method. Hydrosphere. Hazard Processes and Phenomena, 5(3), 228–243. https://doi.org/10.34753/HS.2023.5.3.228

Issue

Section

Methods, models and technologies
Loading...