Methods, models and technologies
  • Alexey Yu. Vinogradov Scientific and Industrial Research Association Gidrotehproekt, Valday, Russia Saint Petersburg State Forest Technical University, St. Petersburg, Russia
  • Mariya M. Kadatskaya Scientific and Industrial Research Association Gidrotehproekt, Valday, Russia
Keywords: the von Karman constant, coefficient of turbulent exchange (viscosity), Reynolds number, cient of hydraulic friction, velocity distribution diagram, turbulent mode

The article considers various approaches to assessing the physical essence of the von Karman constant characterizing the vertical distribution of the flow velocity. On the one hand, the von Karman constant is a proportionality coefficient between the length of the mixing length and the depth; on the other hand, it characterizes the tilt angle of the vertical velocity profile. It is considered that this parameter is universal, that means it is constant as long as the averaged velocity distribution is constant. However, depending on estimation way of this constant, its values under the same conditions may differ to 2 orders.

Two methods for estimating the von Karman constant are considered. In the first case, determination of the von Karman constant is on the grounds of direct measurements of the maximum and average flow velocities, depth and slope of the water surface in a particular area. Propagation of the obtained value to other objects will lead to errors.

In the second case, the parameter is defined as a function of the coefficient of hydraulic friction. The authors showed that the von Karman constant is a function of the coefficient of turbulent exchange (viscosity) and indirectly is a function of the depth. As a result of the calculations, it was shown that the maximum values of the von Karman constant observed on the bottom.

Additionally, the authors propose a new version of the calculation of the von Karman constant through the tension shift for a turbulent flow.

It is concluded that since for velocities <1 meter per second the changes in the von Karman constant values from 0.27 to 0.38 the maximum velocity with variation do not exceed 3%, which fits into the accuracy of the velocity measurements, it is practically impossible to estimate the value of von Karman constant by first method for flat rivers even with multiple measurements with standard hydrometric equipment.

Keywords: the von Karman constant; coefficient of turbulent exchange (viscosity); Reynolds number; coefficient of hydraulic friction; velocity distribution diagram; turbulent mode

Alexey Yu. Vinogradov,
Scientific and Industrial Research Association Gidrotehproekt, Valday, Russia Saint Petersburg State Forest Technical University, St. Petersburg, Russia

eLibrary SPIN-код: 3692-8409
Scopus ID: 56909443300
ORCID iD:0000-0001-6834-2507

Mariya M. Kadatskaya,
Scientific and Industrial Research Association Gidrotehproekt, Valday, Russia

eLibrary (РИНЦ) SPIN-код: 6624-6450
Scopus ID:
ORCID iD: 0000-0002-5979-0970

Akinlade O.G., Bergstrom D.J. Effect of surface roughness on the coefficients of a power law for the mean velocity in a turbulent boundary layer. Journal of Turbulence. 2007. V. 8. Art. N18. DOI: 10.1080/14685240701317245

Baryshnikov N.B., Popov I.V. Dinamika ruslovykh potokov i ruslovye protsessy [The dynamics of channel flows and channel processes]. Leningrad, Publ. Gidrometeoizdat, 1988. 454 p. (In Russian).

Bol'shakov V.A., Konstantinov Yu.M., Popov V.N. Spravochnik po gidravlike [Handbook of hydraulics]. Kiev, Publ. Vishcha shkola, 1977. 280 p. (In Rus-sian).

Daily J.W., Harleman D.R.F. Fluid dynamics. Addi-son Wesley, Reading, Mass., 454 p. (Russ. ed.: Deili Dzh., Kharleman D. Mekhanika zhidkosti. Mos-cow, Publ. Energiya, 1971. 480 p.)

Gidrotekhnicheskie sooruzheniya [Waterworks]. Mos-cow, Publ. Stroiizdat, 1983. 543 p. (In Russian).

Gol'dshtik M.A., Kutateladze S.S. Vychislenie kon-stanty pristennoi turbulentnosti [Calculation of the constant wall turbulence]. Doklady akademii nauk SSSR [Reports of the USSR Academy of Sciences], 1969, t. 185, no 3, pp. 535-537. (In Russian).

Grishanin K.V. Dinamika ruslovykh potokov [The dynamics of channel flows]. Leningrad, Publ. Gidro-meteoizdat, 1969. 428 p. (In Russian).

Hall C.W. Laws and Models: Science, Engineering and Technology. Boca Raton: CRC Press LLC, 2000. 535 p.

Jiménez J., Hoyas S., Simens M.P., Mizuno Y. Turbu-lent boundary layers and channels at moderate Reyn-olds numbers. Journal of Fluid Mechanics. 2010. V. 657. P. 335-360. DOI: 10.1017/S0022112010001370

Laptev A.G., Farakhov T.M. Matematicheskie modeli i raschet gidrodinamicheskikh kharakteristik pogra-nichnogo sloya [Mathematical models and calculation of the hydrodynamic characteristics of a boundary layer]. Nauchnyi zhurnal KubGAU [Scientific Journal of KubSAU], 2012, iss. 82, pp. 704-738. Available at: (In Rus-sian; abstract in English).

Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika: v 2 t. T. 1. Mekhanika turbulentnosti [Statistical fluid mechanics: in 2 vol. Vol. 1. The me-chanics of turbulence]. Moscow, Publ. Nauka, 1965. 639 p. (In Russian).

Odishariya G.E., Tochigin A.A. Prikladnaya gidro-dinamika gazozhidkostnykh smesei [Applied hydrody-namics of gas-liquid mixtures]. Moscow: Publ.

VNIIGAZ, 1998. 398 p. (In Russian)

Schlichting H. Grenzschicht-Theorie. Karlsruhe, G. Braun Verlag, 1965. 736 p. (Russ. ed.: Shlikhting G. Teoriya pogranichnogo sloya. Moscow, Publ. Nauka, 1974. 713 p.)

Shterenlikht D.V. Gidravlika: uchebnik dlya vuzov [Hydraulics: a textbook for high schools]. Moscow, Publ. Energoatomizdat, 1984. 640 p.

Skrebkov G.P., Fedorov N.A. Integral'naya i loka-l'naya velichiny koeffitsientov turbulentnogo profilya skorosti [Local and integral values of coefficients of the turbulent velocity profile]. Vestnik MGSU, 2013, vol. 8, iss. 4, pp. 201-208. (In Russian; abstract in English). DOI: 10.22227/1997-0935.2013.4.201-208.

Vinogradov A.Yu., Kadatskaya M.M., Birman A.R., Vinogradova T.A., Obyazov V.A., Katsadze V.A., Ugryumov S.A., Bacherikov I.V., Kovalenko T.V., Khvalev S.V., Parfenov E.A. Raschet nerazmyvay-ushchikh skorostei vodnogo potoka na vysote verkh-nei granitsy pogranichnogo sloya [Calculation of non-eroding water flow velocities at the height of the up-per boundary layer]. Resources and Technology, 2019, vol. 16, no. 3, pp. 44-61. (In Russian; abstract in English). DOI: 10.15393/

Zheleznyakov G.V. Propusknaya sposobnost' rusel kanalov i rek [Bandwidth of channels of channels and rivers]. Leningrad, Publ. Gidrometeoizdat, 1981. 308 p. (In Russian).

Zheleznyakov G.V. Teoriya gidrometrii [Theory of Hydrometry]. Leningrad, Publ. Gidrometeoizdat, 1976. 344 p. (In Russian).

Abstract views: 62
PDF Downloads: 0
How to Cite
Alexey Yu. Vinogradov, & Mariya M. Kadatskaya. (2019). THEORETICAL CALCULATION OF THE VALUE OF THE VON KARMAN CONSTANT. Hydrosphere. Hazard Processes and Phenomena, 1(2), 262-279.


Download data is not yet available.